
A Case for Generalizable DNN Cost Models for
Mobile Devices

Vinod Ganesan∗, Surya Selvam∗, Sanchari Sen†, Pratyush Kumar∗ and Anand Raghunathan†
∗ Department of Computer Science and Engineering, IIT Madras, India
† School of Electrical and Computer Engineering, Purdue University

{vinodg,cs16b029,pratyush}@cse.iitm.ac.in, {sen9,raghunathan}@purdue.edu

Abstract—Accurate workload characterization of Deep Neural
Networks (DNNs) is challenged by both network and hardware
diversity. Networks are being designed with newer motifs such as
depthwise separable convolutions, bottleneck layers, etc., which
have widely varying performance characteristics. Further, the
adoption of Neural Architecture Search (NAS) is creating a
Cambrian explosion of networks, greatly expanding the space
of networks that must be modeled. On the hardware front,
myriad accelerators are being built for DNNs, while compiler
improvements are enabling more efficient execution of DNNs on a
wide range of CPUs and GPUs. Clearly, characterizing each DNN
on each hardware system is infeasible. We thus need cost models
to estimate performance that generalize across both devices and
networks. In this work, we address this challenge by building
a cost model of DNNs on mobile devices. The modeling and
evaluation are based on latency measurements of 118 networks
on 105 mobile System-on-Chips (SoCs). As a key contribution,
we propose that a hardware platform can be represented by its
measured latencies on a judiciously chosen, small set of networks,
which we call the signature set. We also design a machine learning
model that takes as inputs (i) the target hardware representation
(measured latencies of the signature set on the hardware) and
(ii) a representation of the structure of the DNN to be evaluated,
and predicts the latency of the DNN on the target hardware. We
propose and evaluate different algorithms to select the signature
set. Our results show that by carefully choosing the signature set,
the network representation, and the machine learning algorithm,
we can train accurate cost models that generalize well. We
demonstrate the value of such a cost model in a collaborative
workload characterization setup, wherein every mobile device
contributes a small set of latency measurements to a centralized
repository. With even a small number of measurements per
new device, we show that the proposed cost model matches
the accuracy of device-specific models trained on an order-of-
magnitude larger number of measurements. The entire codebase
is released at https://github.com/iitm-sysdl/Generalizable-DNN-
cost-models.

Index Terms—runtime, deep learning, mobile devices, machine
learning

I. INTRODUCTION

Deep Neural Networks (DNNs) have achieved remarkable
success in a wide range of domains. As they get deployed on
resource-constrained platforms, the focus in designing DNNs
is shifting from designing accurate networks to designing
accurate and efficient networks. On the one hand, this is

Surya Selvam is currently a PhD student at Purdue University (sel-
vams@purdue.edu)
Sanchari Sen is currently a research scientist at IBM T.J. Watson Research
Center, Yorktown Heights, NY (sanchari.sen@ibm.com)

challenged by the need to characterize DNNs on a wide variety
of hardware devices - different generations of CPUs, GPUs
and the rapidly increasing set of accelerators. On the other
hand, there is a growing diversity of neural networks due
to newer design motifs such as skip connections, depthwise
separable convolutions, bottleneck layers, etc. Further, the
adoption of Neural Architecture Search (NAS) [1], [2] is
creating a Cambrian explosion in networks with characteristics
that often differ from human-designed networks. This product
space of DNNs and hardware platforms is increasing at a scale
where explicitly measuring the run-time of each network on
each hardware is too expensive. It is thus critical to create
cost models that can estimate latency for a given network
and hardware platform. Unfortunately, existing efforts on
such cost models are restricted to either a limited space of
networks (e.g., in the context of fine-tuning a base network
structure), or a limited set of hardware platforms. Further, most
existing studies train separate cost models for each hardware
platform [2]–[5], requiring a large number of measurements
across hardware. Thus, such approaches may not be feasible
in the context of large-scale deployment of DNNs in practice.
For example, the developer of a DNN-enabled mobile app
may want to estimate latency on the wide range of devices on
which the app may be installed without the ability to explicitly
characterize on each of them.

In this paper, we systematically study DNN cost models
on a large collected data-set consisting of run-times of 118
networks on 105 mobile devices. The 118 networks consist
of popular DNNs for computer vision applications as well
as randomly generated DNNs with varying number of layers,
operators, filter-sizes, and channels. The 105 mobile devices,
which are largely obtained by crowd-sourcing, represent CPUs
used in more than 72% of today’s mobile devices [6]. On each
device, we measure the latency of each network executed 30
times using a custom Android app.

With exploratory data analysis of the variation in measured
latencies across networks and devices, we establish the need
for good cost models. We then focus on an essential aspect of
a generalizable cost model: the input representation for both
the network and the hardware platform. We represent each
network by encoding layer-wise its operators (Conv, ReLU,
etc.) and parameters (kernel size, stride, padding, etc.) as a
vector. For the latter, we find that representing a hardware
platform by basic parameters like core frequency and main



Fig. 1. Characterization framework for DNNs on mobile devices. Our network set includes both randomly generated DNNs as well as hand-designed [7]–[9]
and NAS generated [1], [2], [10], [11] DNNs. We quantized each DNN to 8-bits using TFLite’s post-training quantizer. We developed an Android app with
the TFLite interpreter to execute the DNNs on the devices. The app schedules each DNN on the CPU and measures the inference latency, averaged across 30
runs. The measured values along with some queried hardware parameters are sent over HTTP to a database. We crowd-sourced the application and collected
data on 105 mobile devices.

memory size alone leads to poor accuracy. One way to improve
accuracy is to use detailed micro-architectural features to
represent the hardware. However, such details may not always
be available to a software developer. Instead, we propose an
alternative approach of representing each hardware platform
by the run-times of a small signature set of networks on it.

To maximize the model’s accuracy, we evaluate three sets
of methods to select the signature set: random sampling (RS),
Mutual Information based sampling (MIS), and Spearman Cor-
relation Coefficient based sampling (SCCS). We use XGBoost,
a state-of-the-art ML algorithm based on gradient boosting, as
the regression method to estimate runtime. In our experiments,
we found that even a very small signature set of up to 10
networks leads to cost models with high accuracy.

We further observe that the learnt cost model generalises
well across networks and hardware platforms. However, gen-
eralisation is weaker when the cost model is tested on an
adversarially chosen small set of hardware platforms.

In summary, we present the first systematic study of cost
models for estimating run-times of DNNs across a wide-
range of mobile devices. Our analysis suggests a simple,
yet effective, method for building generalizable cost models
through collaboration:
• Maintain a repository of the run-times on different de-

vices of a small signature set of up to 10 networks.
• Use these run-times as a representation for each device

to train a cost model on a larger set of networks.
• For a new network, use the cost model to predict the run-

time on any device with a representation in the repository.
• For a new device, measure the run-time of the signature

set and add it to the repository.
• Periodically fine-tune the cost model as more measure-

ments are added in the repository.
With our collected data, we simulate such a collaborative
framework. We find that the cost model trained on the reposi-

tory matches the accuracy of device-specific models trained
on an order-of-magnitude larger number of measurements.
Building and maintaining such a global framework would be
of interest to both network and hardware designers and would
significantly benefit the process of designing and deploying
efficient DNNs. Additionally, such a cost-model could signif-
icantly improve the search-time, and even the performance,
of hardware-aware Neural Architecture Search algorithms [2],
[12] and domain-specific compilers [3], [13] across a wide-
variety of hardware devices.

The rest of the paper is organized as follows. In Section
II, we detail the procedure used to collect data across mobile
devices, and share results of exploratory data analysis on the
collected measurements. In Section III, we describe our core
contribution of generalizable cost models. We then present and
discuss experimental results in Section IV. We illustrate col-
laborative workload characterisation in Section V. We discuss
related work in Section VI and conclude in Section VII.

II. DATASET COLLECTION AND EXPLORATORY ANALYSIS

In this section, we first describe our approach to collecting
run-time measurements across devices, which consists of two
components: a parameterized DNN generator and an Android
app framework. Figure 1 graphically illustrates these compo-
nents. We then perform exploratory data analysis to reveal
distributional and relational properties across the data. Our
analysis suggests that basic hardware features of a device are
insufficient for predicting latency across DNNs.

A. Parameterized DNN Generator

We perform the run-time measurements on mobile devices
across a benchmark suite of neural networks, consisting of
18 popular pre-designed networks and 100 randomly gener-
ated networks. The first set of networks includes hand-tuned
networks such as MobileNets [7], [8] and SqueezeNet [9], as
well as networks generated with Neural Architecture Search



Fig. 2. Distribution of FLOPs (in millions) for the 118 networks. The FLOPs
of the networks range from 400 million MACs to 800 million MACs

Fig. 3. Histogram of CPUs for the 105 devices. The devices show significant
diversity from Cortex-A53, which is almost eight years old, to Kryo-585, a
few months old. These diverse CPUs capture various micro-architectural and
technology changes across processor generations.

(NAS) [1], [2], [10], [11]. The randomly generated networks
in the second set are obtained using an in-house parameterized
DNN generator — a PyTorch [14] framework to generate
arbitrary but valid DNNs within a user-defined search space.
This search space has been adapted from popular hardware-
aware NAS frameworks [2], [11], [12] and is composed of dif-
ferent operators and parameters, as illustrated in Figure 1. The
operator set covers the spectrum of network design patterns
used in mobile DNNs including inverted bottleneck layers,
convolutions, activations, pooling and skip-connections. The
parameter set captures network features such as number of
layers, kernel size, number of input and output channels, stride,
padding, groups etc. These networks are diverse: We visualize
this diversity along the axis of FLOPs required to run inference
on these networks in Figure 2.

B. Android App for Latency Measurement

To measure the latency on a large set of devices, we chose to
develop an Android app and crowd-source the measurements.
Our Android app uses the TFLite [15] runtime APIs to
measure the inference latency of DNNs, as it is competitive

in terms of performance among mobile DNN frameworks.
Since our DNN generator outputs PyTorch networks, we first
convert them to TFLite models using ONNX [16]. In order
to optimize the application size and encourage more users to
participate in the crowd-sourcing, we quantized the networks
to int8 precision using TFLite’s post-training quantizer, as
shown in Figure 1. Such quantization is routinely performed
and represents the typical deployment procedure for mobile
devices [17].

Many mobile devices contain accelerators such as GPUs,
DSPs and even Neural Processing Units (NPUs), in addition
to CPUs. However, a majority of edge inference workloads
still run on low-power CPUs, while only a fraction of them
are run on GPUs and NPUs [6]. Further, programmability
of these available GPUs and NPUs is a major bottleneck.
We observed that the GPU and NPU Android API delegates
were either limited to a certain class of mobile phones or
were prone to unexpected outcomes (very high latency) or
crashes. To ensure reliable collection of measurements across
a large set of mobile devices, we restrict our focus to mobile
CPUs. However, the methodology presented in the subsequent
sections would also apply to execution on GPUs and NPUs.

Our Android application sequentially schedules each of the
118 quantized DNNs to one of the big CPU cores in the
mobile’s big.Little CPUs, similar to the technique followed
by the authors of MobileNetV3 [12]. We measure the single-
threaded inference latency of all the networks on a single large
CPU with a batch size of one and average the values across
30 runs. The values are automatically transmitted to a public
server via HTTP upon completion of the application.

Our application was made available publicly
(https://hwcostmodels.github.io), allowing us to gather
measurements of 118 networks on 105 mobile devices,
resulting in a total of 12,390 data points (each of which is a
mean of 30 measurements). Figure 3 shows the distribution of
CPUs in this set. As can be seen, there is a large diversity of
devices across multiple chipsets (38 unique types), and core
families (22 unique types). We estimate that these devices
represent the CPUs in roughly 72% of mobile device in the
field today [6].

C. Exploratory Data Analysis

We next present results of exploratory data analysis on
the collected measurements. Our objectives in this analysis
are twofold. One, to visualize the variation of latency across
networks and hardware and to thereby identify clusters of
similar hardware devices and networks. Two, to identify any
obvious patterns that relate the hardware and network features
to the measured latencies.

Clustering Devices. To begin, we cluster the hardware
devices where each device is represented by a 118 dimensional
vector corresponding to the latency on all networks. We use the
standard k-means clustering algorithm with different values of
k (the number of clusters). We find that k = 3 is a good choice
dividing the devices into three clusters which we call fast,
medium, and slow, since they demonstrate mean latencies of



Fig. 4. 105 hardware devices categorized into 3 clusters: fast, medium and slow via K-means culstering. The above plots show the latency distribution of the
clusters in that order. The violin plot shows the distribution, mean latency, and median latency for each hardware. The fast, medium, and slow clusters have
a mean latency of 50mns, 115ms, and 235ms respectively. The Venn diagram shows the CPUs that constitute each cluster.

50 ms, 115ms, and 235 ms, respectively. To provide a visuali-
sation of the latency measurements (beyond just a statistic like
mean), we draw violin plots of the latency measurements of
each device in Figure 4. The violin plots show the probability
density of latency across networks (along with median and
the inter-quartile range). Both the slow and medium clusters
have individually similar distributions indicating homogeneity,
while the fast cluster shows some diversity, denoting two sub-
clusters. In all cases, we observed that distributions are wide
(note the log scale on the y-axis) and distinctly bimodal.

Mapping CPUs to device clusters. We now analyse the
properties of the CPUs in each of the three clusters. In Figure
4, we also draw the Venn diagram to specify the CPUs in
hardware devices belonging to each cluster. We observe that
there exist some overlaps, i.e., certain CPUs belong to multiple
clusters. For instance, devices in both medium and fast clusters
have Cortex-A53 and Cortex-A72 CPUs. Similarly, there are
devices in all the three clusters that use a Kryo 280 CPU.
However, in most cases (80 out of 105 devices) the CPU
uniquely determines the device cluster. The average frequency
for the fast, medium, and slow clusters are 2.67, 2.1, and 1.9
GHz, respectively, while the mean DRAM capacities are 6, 3,
2 GB respectively. Thus, we have two observations: one, the

CPU often maps a device to a specific cluster, and two, the
specifications of CPUs across clusters are predictably varying.
This creates the expectation that we can estimate the latency
of a network based on specifications of the CPU.

Fig. 5. Latency vs. Frequency for various DRAM sizes for MobileNetV2
across 105 devices. The hue in the graph represents the DRAM size. There’s
a decreasing trend of average inference latency with increase in frequency.
But for a given frequency, there is significant variability in latency, even for
the same DRAM size.

Relating latency to CPU specification. We evaluate the



Fig. 6. Distribution of latencies of devices in fast, medium and slow hardware clusters on small, large and giant network clusters. There are two key
observations: (i) Latency distribution of hardware clusters have similar patterns across network clusters, and (2) The overlapping latency distribution of
hardware clusters indicate that predicting the latency for a hardware based on its cluster is not possible.

above expectation by visualising in Figure 5 the latency
measured for MobileNetV2 [8] on all devices. The x-axis
denotes frequency and the hue captures the DRAM capacity
(a darker color denotes a larger DRAM capacity). Although
we can observe a decreasing trend in latency with increase
in frequency and DRAM size, there is still a significant
variation. For instance, devices that run at 1.8 GHz and have
3GB DRAM capacity show over 2.5x variability in latency,
ranging from 120 to 300ms. Clearly, this range is too broad
to enable accurate workload characterization. Hence, simple
hardware features like the core frequency and main memory
size seem insufficient in predicting latency. We analyse this
more formally and reach the same conclusion in the next
section, by measuring the accuracy of a machine learning
model trained with these features.

There are many other micro-architectural features such as
out-of-order processing, super-scalar processing, cache size,
and prefetching, which could affect latency. Analyzing the
right set of these features and quantifying their predictive ac-
curacy is a potentially interesting research direction. However,
we surmise that such detailed characterization is not readily
available to software developers looking to deploy DNNs
on to a wide range of devices. We thus take an alternative
approach of characterizing a device by a small number of
latency measurements, as will be discussed in the next section.

Controlling for both device and network clusters. Just as
we clustered the devices, we can similarly cluster the networks
where each network is represented by a 105-dimensional
vector given by the latency on all devices. We similarly found
that k-means clustering provided a good trade-off at k=3
with three clusters which we name as small, large, and giant
(due to a trend in number of FLOPs). Given this clustering,
we can ask: “How discriminative of latency are device and
network clusters”. In other words, how distinct are the latency
distributions when we control both for the device and network
clusters. We show this with the help of faceted density estimate
plots in Figure 6. In the case of all three network clusters
– small, large, and giant – the distributions across device
clusters are overlapping. Thus, even if we pick a specific
cluster for both the device and network, the measured latency
distributions are not distinct from each other.

In summary, our exploratory data analysis on the large
set of measurements reveals the qualitative conclusion that
measured latency shows a large distribution which cannot be
satisfactorily explained by simple hardware specifications or
network classes.

III. TOWARDS GENERALIZABLE COST MODELS

In this section, we present our main contribution on how
to represent a given network and hardware, and then discuss
how to use such representations to learn a latency model that
generalizes across hardware and networks.

A. Overview

What would it take for a cost model to generalize across
hardware and networks? At the outset, we need representations
of both the network and the hardware. That is, given a DNN
we need to map it on to a vector, say N , that represents the
key features of that DNN. Similarly, each hardware needs
to be mapped to a vector of key features, say H . Then a
machine learning model, say M , could be trained to take as
inputs N,H and estimate the latency l of that network on
that device. Once such a model is trained, it can be used to
estimate the latency for different network-hardware pairs. A
model is said to generalize well if it accurately estimates the
latency on networks and hardware devices that are not present
in its training set. The natural question then is to identify right
choice for the representations N and H . A representation must
capture all features that are relevant to estimate the latency, but
avoid extraneous features that can slow down data collection or
increase inaccuracy in the training process. The representation
for a network is more straightforward and discussed first.
Subsequently, we discuss different choices for the hardware
representation.

B. Network Representation
A DNN can be viewed as a graph with nodes describing

operators and edges describing the flow of data between
the operators. Example operators include convolution, fully-
connected neurons, recurrent neurons, pooling, activation and
skip connections. Often, the graphs are linear wherein opera-
tors are stacked sequentially in what are called layers. Each



Fig. 7. This diagram shows our proposed cost model that takes in the
representation of DNN and hardware as input to predict the latency of that
DNN on that hardware. We represent each DNN by recursively encoding the
layer identifier (one-hot) and its parameters. Each hardware is represented
using a vector containing measured inference latencies on the signature set.
We use XGBoost to train our cost model on inference latency data.

operator or layer has specific parameters, which characterize
how it operates on the input. For instance, a convolution
operator has parameters such as stride, padding, and kernel
size. Thus, we can represent a DNN layer-wise: For each
layer, we can represent the input and output sizes as is, the
operator as a one-hot encoded vector, and its parameters as
a sequence of numbers. Such representations across layers
can be concatenated to create a single vector for the network.
The length of such a representation would depend upon the
number of layers in the network and thus would vary across
networks. To enable that such representations can be processed
by a larger class of machine learning models, we apply the
standard procedure called masking, whereby we pad each
representation by dummy values to match the size of the
longest representation. Thus, our representation of a network
is a concatenation of layer-wise representations as illustrated
in Figure 7. We note that, though this proposal is only one
of several representations of DNNs, there is neither much
ambiguity or choice in the features to capture. On the other
hand, the representation of the hardware is more open to
choice, as we discuss next.

C. Hardware Representation

The hardware representation should map a given device on
to a vector that captures all hardware characteristics required
to predict latency on different networks. A first solution
is to utilize essential hardware specifications, such as core
frequency, main memory size and CPU family. Specifically,
we choose to represent a device by three components: a one-
hot vector representing the CPU model (eg. Cortex-A53 or
Kryo 485, see Figure 3 for the full list in our dataset), an
integer corresponding to the CPU frequency, and an integer
corresponding to the main memory size. As we discussed
earlier, while more features such as cache size or pipeline
depth can be added to the representation, they are not readily
available to software developers. Further, the CPU model itself

may represent these more detailed features such as pipeline
depth. For instance, we would not expect that two devices
with the same make (say Cortex-A53) and the same frequency
would differ in specific micro-architectural features.

In order to measure the effectiveness of such a hardware
representation in learning latency models, we train a machine
learning model of the form shown in Figure 7, and evaluate
its accuracy. We use XGBoost, which is an efficient model
based on parallel tree-boosting algorithm, as the model. The
XGBoost-based models are seen to work well in practice
especially in problems where training data-set is not particu-
larly large. Further, in our experiments XGBoost outperformed
many other models, including an LSTM-encoder followed
by a fully-connected neural network, a random-forest model,
and k-nearest neighbour models. First, we represent the 118
networks and the 105 hardware devices as discussed. We
then split the devices randomly into train (70%) and test
(30%) sets. The XGBoost model was trained on the train
set using the hyperparameters gbtree booster with lr = 0.1,
n estimators=100 and max depth = 3. The trained XGBoost
model then was used to estimate the latency for each of the
points in the test-set. The actual and predicted latency for each
of the inputs are shown in a scatter plot in Figure 8. The hue
of the points denotes the CPU frequency. We observe that the
model is unable to learn accurately as the points are spread out
far from the ideal y = x line. The coefficient of determination,
also popularly called R2 in this case was 0.13, which indicates
a poor predictive accuracy.

Fig. 8. Actual runtime versus predicted runtime of a cost model trained using
static parameters of a device as hardware representation. R2 Correlation value
is 0.13.

The above experiment reveals that the proposed hardware
representation is inadequate. As an alternative, we pose the
following question: “Can the latency of a chosen small set
of networks on a hardware platform be informative enough
to represent that hardware?”. In other words, a device is
represented not by its hardware specifications, but by mea-
suring latency of a small set of chosen networks. We call
this chosen set of networks the signature set. Note that such



a representation is convenient for software developers as it
can be obtained by executing the signature set on a given
device and measuring its latency. There are now two essential
questions. First, how big does the signature set need to be?
Second, how do we choose the networks that constitute the
signature set? We answer these two questions by proposing
three approaches in the remainder of this section. These
approaches are evaluated in the next section.

1) Random Sampling (RS): As the first approach, we
consider a simple random sampling (RS) technique. Given a
user-defined number of networks, we choose signature set by
uniformly sampling from the set of all networks. This sampling
requires a definition of the population of networks, which
must include a large diversity of networks that are expected
to be seen during latency estimation. For instance in our
case, the population includes the 118 networks comprising
both popular networks and generated networks. Since there
is no prior in selecting which networks form the signature set,
the performance of any trained cost model may vary across
samples.

Unlike the RS approach, the next two proposed methods
choose a signature set by maximizing a metric of gain. The
two metrics of gain used are (i) Mutual Information, and (ii)
Spearman Correlation Coefficient.

2) Mutual Information Selection (MIS): Each network in
the signature set provides information on latency of a device
on the specific operators in that network. This suggests that
including two networks which have very similar latency pat-
terns across hardware devices is to be avoided. In other words,
we want to include networks in signature set which contribute
unique characterizations of the hardware device. Based on this
intuition, we propose to use mutual information or equivalently
information gain to guide the choice of signature set. Mutual
information between a pair of random variables captures the
amount of information obtained about one random variable
by observing the other random variable. More formally, it is
given by the following relation between joint and marginal
probability distributions of random variables X and Y :

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(X,Y )(x, y) log

(
p(X,Y )(x, y)

pX(x).pY (y)

)
Given this definition, a good choice of signature set is a sub-

set of networks that maximize the mutual information with the
entire set of networks. Note that we treat the networks in signa-
ture set and outside it as two random variables whose samples
are given by the latency measurements on the devices. Finding
an optimal subset suffers from combinatorial explosion. As an
alternative, we follow a greedy iterative approach, wherein in
each iteration we add a single network into signature set. This
network is chosen such that its addition maximizes the mutual
information between the signature set and other networks. It is
known that the function that maps mutual information across
signature set is a submodular function and consequently a
greedy algorithm works well with a constant approximation
factor [18]. We detail the iterative process in Algorithm 1,

which takes as input the dataset matrix of latency measure-
ments where n networks are arranged in rows and its latencies
on h hardware devices are arranged in columns. The initial
network is chosen randomly and all subsequent networks are
chosen to maximize the greedy mutual information objective.
The number of networks, m, to be added to the signature set is
a user-defined variable.

Algorithm 1: Mutual Information Selection (MIS)
Input : dataset, n×h matrix containing inference

latencies of n networks on h hardware
Input : m, Number of networks to be selected
subset← {initialChoice(network)}
for k = 1 to m− 1 do

max info← 0
for j = 1 to n do

subsetTemp← subset ∪ j
newV ← dataset[j] // h sized vector
subsetMat← dataset[subsetTemp]
info← ComputeMI(subsetMat, newV )
index← (info ≥ max info) ? j : index
max info← max(info, max info)

end
subset← subset ∪ index

end

3) Spearman Correlation Coefficient Selection (SCCS):
While the Mutual Information metric captures conditional
probability between pairs of random variables, we may want to
abstract some of the detail in the measurements. For instance,
instead of predicting the exact latency of different networks
for a given hardware, we may only be concerned with sorting
the networks in terms of latency. This is particularly relevant
in finding an efficient network for a given hardware, as is
done in NAS. We thus propose to look at the Spearman
correlation coefficient as an alternative metric for choosing
the signature set. This coefficient is defined as the Pearson
correlation coefficient on the rank of the two random variables,
i.e., instead of computing the Pearson correlation on two
variables X and Y , we instead compute it on the ranks of
the variables.

Unlike in the case of Mutual Information, the Spearman
Correlation Coefficient can only be computed for networks
pair-wise. We thus follow a modified iterative greedy heuristic
to choose signature set. First, we compute the coefficient for
each pair of networks, and then choose the network which
has the highest number of coefficients greater than a threshold
γ (typically close to 1). We then remove from the set of all
networks, all those networks which have a correlation coef-
ficient with the chosen network greater than γ. This removal
signals that those networks which are highly correlated to the
chosen network can be removed from further consideration.
In the remaining set of networks, this procedure is repeated
to add each time one additional network to signature set. We
detail this procedure in Algorithm 2, which takes as input a



square matrix, ρ, where each cell represents the correlation
coefficient for a given pair of networks.

Algorithm 2: Spearman Correlation Coefficient Selec-
tion (SCCS)

Input : ρ, n×n matrix containing Spearman
Correlation between all pairs of networks
across all hardware

Input : m, Number of networks to be selected
Input : γ, Correlation Threshold
subset← ∅
for k = 1 to m do

index← argmaxi
n∑

j=1

ρ[i][j] ≥ γ

subset← subset ∪ index
highCorr ← ∅
for j = 1 to n do

if ρ[index][j] ≥ t then
highCorr ← related ∪ j

end
end
Delete highCorr networks from ρ

end

In summary, we discussed the network and hardware repre-
sentations. The network representation is a representation of
layer-wise features. The hardware representation given by top-
level specifications did not produce accurate cost models. We
thus consider the usage of a signature set to represent a device,
and propose three ways to select the signature set.

IV. RESULTS

In this section, we first present the methodology adopted
in our experiments. We then present results which evaluate
the cost models that are learnt with the different hardware
representations.

A. Experimental Methodology

In all our experiments we use XGBoost as the ML regres-
sion model of choice to build the cost model. To evaluate
the generalizability of our learnt models, we split the devices
into train (70%) and test (30%) sets. The two sets contain
the latency of all the 118 networks for every hardware in that
set. Only the hardware devices in the training set, participate
in choosing the signature set of networks for the hardware
representation. Once the signature set networks are chosen,
their latency on all the hardware devices in the train and the
test set are discarded. We then train the XGBoost model with
the remainder of the training set data. We use the root mean
square error (RMSE) loss function for optimizing the learning
model. The same hyperparameters described in Section III-C
are used. Once the model is trained, we evaluate it on the test
set with the co-efficient of determination (R2) as the metric.

B. Comparison of Methods to select signature set

As the first set of experiments, we choose 10 as the size of
signature set and compare the three methods of choosing the
signature set. The accuracy of the models trained with three
different signature sets are illustrated in Figure 9. We plot the
actual-vs-predicted latency for all network-hardware pairs in
the test set. The points are closer to the y = x line denoting
higher accuracy (in contrast with Figure 8). Quantitatively, the
accuracy of the model is captured by high R2 values: 0.9125,
0.944, and 0.943 for RS, MIS, and SCCS, respectively. Notice
that the plots in Figure 9 also qualify the generalization of the
models, since the plotted values are on the test set which have
hardware devices that are unseen by the model during training.
Amongst the three approaches to choose signature set, MIS
and SCCS perform better with higher R2 values. However,
we find that even the naı̈ve choice of signature set based
on random sampling performs competitively. This illustrates
the effectiveness of our approach of representing a device by
latency measurements on few (in this case 10) networks.

There are two further questions. First, are there any chal-
lenges with random selection of signature set - in particular is
the method robust with no poorly performing outliers? Second,
what is a good choice for the size of signature set?

C. Variation across randomly chosen signature set

We now study the robustness of the randomly chosen
signature set. We randomly sample 100 different signature
sets each of size 10, and use them to compute hardware
representations. For each representation, we train a different
model with XGBoost. Figure 10 shows the test R2 score
for each such trained model. From the plot it is clear that
models learnt with randomly chosen signature set hardware
representations perform on average competitively. The average
R2 score for RS is 0.93, compared to 0.944, and 0.943 with
MIS and SCCS, respectively. However, there are samples
where the model performs relatively worse: a low R2 score of
0.875 for 2 of the models. These outliers, though infrequent,
highlight the challenge with random sampling, wherein they
may generate representations leading to poor models. Thus,
we recommend the deterministic methods MIS or SCCS for
selecting signature set.

D. Evaluation of different sizes of signature set

We now evaluate the performance of models when using
different sizes of signature set. Clearly, a larger signature
set captures more detailed features of a hardware and may be
expected to increase accuracy of the cost model. However a
larger signature set implies higher cost in collecting the latency
measurements. We explore this trade-off for the three methods
for choosing signature set. Figure 11 plots the R2 metric for
the trained models for each choice of number of networks in
signature set. For the random sampling method, we report the
R2 values by averaging over 100 samples.

There is a general trend of improved accuracy on increasing
the size of signature set. In the case of random sampling, we
find that there is a consistent improvement with the rise in



Fig. 9. Actual vs Predicted runtimes (in ms) for our hardware cost models learnt using the proposed hardware representations under different sampling
techniques. y=x is the ideal regression curve expected.

Fig. 10. R2 value for 100 different randomly chosen signature sets. They
perform competitively against MIS and SCCS. However, there are some
outliers that may generate representations leading to poor models.

the number of networks, even to sizes of over 20. Thus, if
we could afford a larger set of measurements, then random
sampling provides a simpler method to select signature set.
However, we recall again the caution that some of these
random samples may be outliers and lead to inaccurate models.
For MIS and SCCS the R2 is around 0.94 even for small
signature sets. Based on these results, we identify that a
signature set of sizes 5-10 are good choices when using these
deterministic selection methods, amounting to a sampling ratio
of 4-8% from the total set of networks (118 in total). Selecting
networks beyond this fraction does not increase accuracy
indicating a saturation in mutual information gain in the case
of MIS, or high pair-wise correlation in the case of SCCS.

E. Generalizability between hardware clusters

So far, the results have indicated that signature set is an
effective way of representing hardware for training generaliz-
able cost models. We now experiment to identify limits to this
generalizability. In particular, we consider adversarial splits of
the hardware devices amongst train and test sets. Instead of
splitting the devices randomly between train and test sets, we
choose them based on the clustering presented in Figure 4 into
fast, medium, and slow devices. As the violin plots of Figure 4

Fig. 11. Accuracy scaling with increase in the number of networks in
signature set. A larger signature set captures detailed features of hardware.
However, it implies higher characterisation cost.

show, devices across these clusters differ significantly in their
latency characteristics. We choose devices from two clusters
as the training set, and those from the third as the test set. The
size of the signature set is set to 10. For each of these settings
we report the R2 values on the trained models for signature
set chosen according to the three methods - RS, MIS, and
SCCS in Table I. As an example, the R2 value of 0.912 in
the first cell is for the case of random sampling of signature
set, the model trained on the medium and slow clusters, and
tested on the fast cluster.

From the results we make two observations. Firstly, the
models generalize relatively better when medium and slow
clusters are used as test sets. This suggests that devices
in the fast cluster generate more generalizable cost models.
Conversely, when the fast cluster is used as the test test, models
perform poorly indicating that the devices in the medium and
slow cluster do not learn cost models that generalize to the fast
cluster. Perhaps, the devices in the fast cluster have micro-
architectural features quite different from those in the other
two clusters. Thus, when in the devices chosen in the training
set, diversity must be maintained. Secondly, we highlight
again the surprising generalization that the cost models show
across hardware. With measurements on CPUs of fast and



TABLE I
TEST SET R2 SCORE FOR A COSTMODEL TRAINED ON TWO HARDWARE

CLUSTERS AND TESTED ON THE THIRD CLUSTER

Subsetting
Technique

Coefficient of determination (R2)
Fast Medium Slow

Random
Sampling 0.912 0.964 0.975

Mutual
Information 0.916 0.973 0.967

Spearman
Correlation 0.949 0.976 0.97

medium mobile devices and representations of hardware on
10 randomly sampled networks, the trained models predict
latency on slow mobile devices with R2 over 0.97. This result
reaffirms our confidence that the presented methodology is
effective in learning generalizable cost models.

V. PROPOSED COST MODEL IN PRACTICE:
COLLABORATIVE WORKLOAD CHARACTERISATION

In this section, we discuss a practical setting wherein gen-
eralizable cost models are used to collaboratively characterize
networks on different hardware. With a simulation on the real
data-set we quantify the benefits of such collaboration.

Our method proposed so far has two requirements: (a)
representation of each hardware in terms of the measured
latency on a signature set, and (b) a training set of latency
measurements on a diverse set of devices. Our results show
that the signature set can be fairly small, but the training set
needs representation of a diverse set of devices. Thus, the
requirement of the training set is still a bottleneck. Principally
there are two approaches to generate a training-set. One,
collect latency measurements on a common but large set of
different networks for a limited set of devices. Two, collect a
small number of measurements on a very large set of diverse
devices. The question then is: “For the latter case to be more
effective, how small can the number of measurements be for
each device and how large must be the set of devices?” Or
differently stated, in the latter collaborative case, how many
devices should collaborate and what should be the quantum of
contribution of each device for training accurate cost models.

A. Simulation methodology

To study the collaborative case, we run a simulation with our
measured values. The simulation is iterative and is as below:
• First we choose the signature set of size 10 using MIS

on all networks (from our collected list of networks).
• In each iteration, a new hardware platform (from our

collected list of devices) is added. Such a hardware
platform contributes its representation as given by latency
on signature set. In addition, each hardware contributes
latency on a small percentage (10-30%) of randomly
chosen networks (from our collected list of networks).

• At each iteration, a XGBoost model is trained to pre-
dict latency where the training set comprises all latency
measurements contributed by previously chosen hardware

devices. We then report the model’s average R2 when
evaluated on all networks (in our collected list of net-
works) for the hardware devices added till then.

• This process continues for 50 such iterations.
This simulation thus studies the evolution of the quality
of a model trained incrementally as one new hardware is
added, wherein the contribution from each hardware is the
measurements on the signature set and a small percentage of
the networks as training data.

B. Evaluation

First we study how the models learnt collaboratively evolve
as more devices are added. Figure 12 shows the average R2

of the learnt collaborative model as each device is added. In
addition, we perform experiments for varying percentages of
network contributions for each device, from 10-30%. Note that
the average R2 is taken across added devices on all networks
(well beyond the training set). Clearly, models become more
accurate as devices continue to be added. We find it surprising
that even with 10 devices the trained models have R2 values
greater than 0.9 in each case. However, if we are interested
in highly accurate models with R2 greater than 0.95, more
than 40 devices would be needed. We also observe that when
each device contributes as low as 10% of randomly chosen
networks as training set, we can still learn accurate models.

Fig. 12. Average R2 score of the collaborative cost model with increase in
the number of devices with each device contributing 10-30% of networks as
training data.

C. Collaborative vs isolated training of the cost model

The above experiment quantified the evolution of accuracy
of the collaborative model. However, to fully value the col-
laborative process we compare it with the case of training a
cost model for a hardware, separately without collaboration.
We illustrate this for the Redmi Note 5 Pro device, that uses
a Kryo 260 Gold CPU.

First, we train a latency cost model for Redmi Note 5 Pro.
Instead of training a single model, we train an entire sequence
of models varying the number of networks in the training set
from 1 to the entire set of 118 networks. Each such model is
evaluated on a test-set of all 118 networks, in terms of the R2



score. The evolution of these R2 scores as more networks are
added is shown in Figure 13. Clearly accuracy improves with
more networks, but with marked regions of slow and rapid
progress.

Fig. 13. R2 score for the collaborative model vs. individual model for Redmi
Note 5 Pro. The accuracy of the single model improves as more networks are
added. However, in the case of collaborative cost model it has an R2 value
of 0.98 on the test set of all networks for contributing just 10 measurements
(11x lower) making a compelling case for collaboration.

We contrast this with the case of collaborative cost model.
We consider 50 randomly chosen devices, of which Redmi
Note 5 Pro is one, with each device contributing only 10
measurements on the signature set and 10 measurements on
other randomly chosen networks. In this case, the learnt cost
model has a R2 value of 0.98 on the test set of all networks on
the Redmi Note 5 Pro device. Thus, with just 10 measurements
from each device, we obtain an accuracy on the Redmi Note
5 Pro device which matches that when trained with more than
100 networks (see Figure 13).

This experiment makes a compelling case for collabora-
tion. Multiple parties can share latency measurements and
network properties to a shared repository along with latency
measurements on a commonly agreed signature set. If such a
collaboration can be enabled, then joint cost models can be
learnt whose accuracy would otherwise require an order of
magnitude more number of measurements if done in isolation
for that device.

VI. RELATED WORK

There have been many prior works that use a cost model to
predict the execution of a DNN for a given hardware. The dif-
ferent efforts can be categorized into two broad themes, based
on the context of the modelling: domain specific compilers
and neural architecture search.

Domain specific compilers for Deep Learning use latency
cost models to guide the exploration of finding an optimal
mapping of a DNN for a given hardware platform [3], [4]. One
such compiler, TVM, proposes the use of XGBoost [19] and
Tree-GRU based learning models to predict the runtime of a

DNN operator for a given hardware target. It employs a novel,
transferable input representation of high level programs based
on its Abstract Syntax Tree (AST) to enable generalization
across a wide range of DNN operators. Halide is another
compiler effort for image processing [4] that uses a simple
MLP based cost-model guided by a carefully chosen set of
large number of program features for predicting the execution-
time of a program schedule. A recent effort from Google [5]
develops a cost-model to accurately estimate the execution-
time of an ML model running on Tensor Processing Units
(TPU). They use GraphSage, a graph library to extract features
or embeddings from a DNN, followed by a feedforward layer
to estimate the execution time of the DNN on TPU. All these
efforts show strong generalizability across a wide range of
DNNs and its operators. However, the cost models are often
trained online, along with the search process, for a specific
hardware platform. Thus these methods are not designed or
tested for generalizability across devices. In contrast, our work
focuses on representations of different devices and learning
cost models that generalize across a wide variety of mobile
devices.

Neural Architecture Search (NAS) is an increasingly popular
technique of employing novel search strategies to design
DNNs within a large space of DNN operators and topolo-
gies. Often, hardware parameters such as latency and energy
efficiency are used as feedback to guide the search process.
In order to reduce the cost of obtaining these parameters
from the hardware, cost models are employed. For instance,
ProxylessNAS [2] and Once-for-All [20] employ a simple
MLP cost model to predict the latency of DNNs on mobile
devices. Similarly, ChamNet [21] creates a Look Up Table
(LUT) of common DNN operator latencies for Samsung S8
and uses an additive model to find the latency of any DNN that
is composed of these common operators. Similar to compiler
efforts, these cost models for NAS have to be trained for every
device separately. Again, our primary focus is to demonstrate
generalization across a large set of devices.

The methods proposed in our work are orthogonal to the
context in which the cost models are used: during compilation
or neural architecture search. Further, our work can be com-
bined with other representations of DNNs such as the graph-
based deep representations as in [5].

VII. CONCLUSION

Characterizing latency of DNNs on hardware devices is
challenging due to both network and device diversity. We
proposed a novel and easy-to-obtain representation of devices
given by the measured latency on a small signature set of
networks. We showed that with a careful choice of the
signature set and the machine learning model, we can learn
accurate models that generalize across networks and hardware.
We demonstrated these results on measurements collected
in the real world on a large diversity of mobile devices.
We also discussed how collaborative workload modelling is
significantly more efficient in comparison to learning cost
models separately for each device. Our work thus recommends



building a central repository, where network representations
and latency measurements across devices are used to train
a continually learning global cost model. Such a global cost
model would significantly reduce the computational and envi-
ronmental overhead in characterizing and fine-tuning DNNs,
both during Neural Architecture Search and domain-specific
compilation. These results would be strengthened by extending
them to desktop- and server-grade devices.

REFERENCES

[1] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search for
mobile,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 2820–2828.

[2] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture
search on target task and hardware,” arXiv preprint arXiv:1812.00332,
2018.

[3] T. Chen, L. Zheng, E. Yan, Z. Jiang, T. Moreau, L. Ceze, C. Guestrin,
and A. Krishnamurthy, “Learning to optimize tensor programs,” in
Advances in Neural Information Processing Systems, 2018, pp. 3389–
3400.

[4] A. Adams, K. Ma, L. Anderson, R. Baghdadi, T.-M. Li, M. Gharbi,
B. Steiner, S. Johnson, K. Fatahalian, F. Durand et al., “Learning to op-
timize halide with tree search and random programs,” ACM Transactions
on Graphics (TOG), vol. 38, no. 4, pp. 1–12, 2019.

[5] S. Kaufman, P. M. Phothilimthana, and M. Burrows, “Learned TPU Cost
Model for XLA Tensor Programs,” in Proceedings of the Workshop on
ML for Systems at NeurIPS 2019, 2019, pp. 1–6.

[6] C.-J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan,
K. Hazelwood, E. Isaac, Y. Jia, B. Jia et al., “Machine learning at
facebook: Understanding inference at the edge,” in 2019 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2019, pp. 331–344.

[7] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[8] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510–4520.

[9] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[10] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda,
Y. Jia, and K. Keutzer, “Fbnet: Hardware-aware efficient convnet design
via differentiable neural architecture search,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
10 734–10 742.

[11] D. Stamoulis, R. Ding, D. Wang, D. Lymberopoulos, B. Priyantha,
J. Liu, and D. Marculescu, “Single-path nas: Designing hardware-
efficient convnets in less than 4 hours.”

[12] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for mobilenetv3,” in
Proceedings of the IEEE International Conference on Computer Vision,
2019, pp. 1314–1324.

[13] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in NIPS, 2017.

[14] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” in Advances
in neural information processing systems, 2019, pp. 8026–8037.

[15] “Tensorflow Lite.” [Online]. Available: https://www.tensorflow.org/lite
[16] J. Bai, F. Lu, K. Zhang et al., “Onnx: Open neural network exchange,”

https://github.com/onnx/onnx, 2019.
[17] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,

and D. Kalenichenko, “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 2704–2713.

[18] A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements
in gaussian processes: Theory, efficient algorithms and empirical stud-
ies,” Journal of Machine Learning Research, vol. 9, no. Feb, pp. 235–
284, 2008.

[19] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[20] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Train
one network and specialize it for efficient deployment,” arXiv preprint
arXiv:1908.09791, 2019.

[21] X. Dai, P. Zhang, B. Wu, H. Yin, F. Sun, Y. Wang, M. Dukhan,
Y. Hu, Y. Wu, Y. Jia et al., “Chamnet: Towards efficient network
design through platform-aware model adaptation,” in Proceedings of the
IEEE Conference on computer vision and pattern recognition, 2019, pp.
11 398–11 407.


