
FuSeConv: Fully Separable Convolutions for Fast
Inference on Systolic Arrays

Surya Selvam, Vinod Ganesan, Pratyush Kumar
Department of Computer Science and Engineering, IIT Madras, India

selvams@purdue.edu, {vinodg,pratyush}@cse.iitm.ac.in

Abstract—Both efficient neural networks and hardware ac-
celerators are being explored to speed up DNN inference on
edge devices. For example, MobileNet uses depthwise separable
convolution to achieve much lower latency, while systolic ar-
rays provide much higher performance per watt. Interestingly
however, the combination of these two ideas is inefficient: The
computational patterns of depth-wise separable convolution are
not systolic and lack data reuse to saturate the systolic array’s
constrained dataflow. In this paper, we propose FuSeConv (Fully-
Separable Convolution) as a drop-in replacement for depth-wise
separable convolution. FuSeConv generalizes the decomposition
of convolutions fully to separable 1D convolutions along spatial
and depth dimensions. The resultant computation is systolic and
efficiently utilizes the systolic array with a slightly modified
dataflow. With FuSeConv, we achieve a significant speed-up of 3x-
7x with the MobileNet family of networks on a systolic array of size
64x64, with comparable accuracy on the ImageNet dataset. The
high speed-up motivates exploration of hardware-aware Neural
Operator Search (NOS) in complement to ongoing efforts on
Neural Architecture Search (NAS).

I. INTRODUCTION

Deep Neural Networks (DNNs) continue to establish state-
of-the-art accuracy on tasks across domains. However, as
accuracy requirements create larger and more complex DNNs,
efficient inference on these networks becomes the primary
challenge. There are two broad approaches to address this
challenge - domain-specific hardware accelerators and effi-
cient operators in DNNs. In many hardware accelerators, a
systolic array [1] is a popular design pattern to accelerate
matrix multiplication and convolution with a grid of multiply-
accumulate units (MACs). It’s efficiency is exemplified by
TPUs [2]: At the time of release, the TPUv1 provided 25 to
29 times higher performance-per-watt than comparable GPUs
[2]. On the other hand, depthwise separable convolution is a
good example of an optimized operator in DNNs. A depthwise
separable convolution decomposes a standard convolution into
independent convolutions on each input channel, called depth-
wise convolution, followed by a 1x1 pointwise convolution.
This reduces the number of parameters and operations as seen
in the MobileNet [3]–[5] family of networks: MobileNet-V3
has 14.5 times fewer MACs but 1.6% higher accuracy on
ImageNet than DenseNet-121 [6].

Surprisingly however, the combination of these two suc-
cessful ideas, i.e., systolic arrays executing depthwise sepa-
rable convolution, does not work as expected. For instance,
MobileNet-V2 has 12× fewer computations than ResNet-50,
but runs only 1.3× faster on a systolic array with MACs
arranged in a 32 × 32 array. This incommensurate scaling

has been identified earlier on EdgeTPU running EfficientNet
[7] and while designing SqueezeNext [8]. In this work, we
look at this discrepancy more closely by posing three research
questions: Formally, why does depthwise separable convolution
not work as well on systolic arrays? Can we design a drop-in
replacement for it that is fast on systolic arrays? How good is
such a replacement in terms of execution time and accuracy?

For the first question, we study the formalism of Regular
Iterative Algorithms (RIA) [9] and show that 2D convolution
is not a systolic algorithm – a class of algorithms that efficiently
run on systolic architectures [10]. Consequently, to map depth-
wise seprabable convolution on to a systolic array, we need
to apply the im2col [11] transformation. We show that this
transformed computation does not have any data reuse on 2D
systolic arrays, and thus has very poor utilization.

For the second question, we propose Fully Separable con-
volution (FuSeConv) as a drop-in replacement for depthwise
separable convolution. FuSeConv generalizes the decomposi-
tion fully to separable 1D convolutions along all spatial and
depth dimensions. 1D convolutions are systolic algorithms and
thus can be efficiently mapped on to systolic arrays. We show
that for efficient execution on 2D systolic arrays, a small change
in the dataflow is required - each row should support a weight-
broadcast link. We evaluate that the cost of this additional
dataflow pattern is small: For instance, for a systolic array of
size 32× 32, only 4.35% area and 2.25% power overheads are
incurred when synthesized on a 45nm node.

For the third question, we extensively evaluate networks with
FuSeConv layers for the ImageNet dataset. In particular, we
replace all depthwise convolution layers in MobileNet(V1,2,3)
and MNasNet networks with two proposed variants of FuSeC-
onv layers. With detailed evaluation we show that one of the
variants is more effective and achieves significant speed-ups
on all three versions of MobileNet and MNasNet. In particular,
we achieve a speed-up of 6.76× on MobileNetV1 on a systolic
array of size 64 × 64, while matching accuracy on ImageNet.
Similarly on MobileNetV2 we obtain a speed-up of 5.1×.

In summary, our work proposes a different primitive operator,
fully decomposed 1D convolutions, for executing DNNs on sys-
tolic arrays. The significant out-performance of this proposed
operator relative to already efficient networks motivates greater
focus on hardware-aware Neural Operator Search (NOS). We
see NOS as a natural complement to ongoing active research on
Neural Architecture Search (NAS), since it informs the choice
of operators considered in the search space of NAS.

The rest of the paper is organized as follows. We discuss



Fig. 1: (a). Loop representation of matrix multiplication; (b). Corresponding recurrence relations; (c). Geometric representation
of the recurrence relation; (d). Output-stationary dataflow mapping to a systolic-array

background material in Section II. In Section III, we show
why depthwise convolution is not efficient on systolic arrays.
We propose FuSeConv and a modified dataflow in Section IV.
We present experimental results in Section V and conclude in
Section VI.

II. BACKGROUND

A. Systolic Arrays

A systolic array [1] defines a regular arrangement, such as
a rectangular grid, of homogeneous processing elements (PEs).
The word ‘systolic’ implies rhythmic patterns in communica-
tion and computation, which are globally synchronous. This
constrained dataflow restricts applications that can be mapped
onto systolic arrays. However, the ones that can be mapped,
such as matrix multiplication, have improved performance due
to low control overhead and main memory dependence. Systolic
arrays are used in many DNN accelerators [2], [12], [13].

B. Systolic Algorithms

We discuss systolic algorithms with the example of matrix
multiplication, as studied in the pioneering work of Kung
and Leiserson [14]. In Fig. 1(a) we show the standard loop
implementation of a matrix-matrix multiplication. We trans-
form this into the format of recurrence relations as shown in
Fig. 1(b). These relations are said to define a regular iterative
algorithm (RIA) [9], since they satisfy three conditions: (a)
Each variable is defined by a name and a set of indices (in
this case 3). (b) Each variable is assigned a value just once
(single assignment language). (c) For each recurrence relation,
the difference between the indices of the variable in the LHS
and each variable in the RHS is a constant. For instance, in the
equation for C[i, j, k], the differences in indices (called index
offsets) to the three variables A, B, and C in the RHS are
[0, 0, 0], [0, 0, 0], and [0, 0,−1], respectively. RIAs that satisfy
these three conditions are a super-set of algorithms which can
be synthesized on systolic arrays, i.e., systolic algorithms [15].

C. Mapping systolic algorithms on to systolic arrays

The computation of the said recurrence relations can be
visualized geometrically as shown in Fig. 1(c). Each point in
the 3D space corresponds to a combination of the indices i, j, k
starting at the origin (0, 0, 0). As shown, inputs A and B are
initialized in respective planes while output C is initialized with
0s. All values are propagated through to other points as per the
recurrence relations. The computations for updating the values

are mapped on to three dimensions. The dimensions i and j,
along which A and B are propagated, are marked as systolic
dimensions. The dimension k along which C is updated is
marked as the ‘time’ dimension, ending with the final computed
value as shown. Assigning such dimensions is equivalent to
mapping the algorithm on to a 2D systolic array as shown in
Fig. 1(d). In the mapping, matrices A and B are input along
rows and columns (the two systolic dimensions), respectively.
The output C is computed in each processing element (PE) over
time (the time dimension). Since the output remains stationary
in the PEs, this dataflow is referred to as output stationary. We
can similarly study input and weight stationary dataflows.

D. Convolution Operations

In standard convolution, an input of size W × H × C is
convolved with a filter of size K ×K ×C to obtain an output
of size N×M×1, where N = W−K+1 and M = H−K+1.
The output of C ′ convolution filters are stacked to obtain an
output of size N ×M ×C ′. In depthwise convolution, an input
of size W×H×C is convolved with a filter of size K×K×C
channel-wise, i.e., every W ×H channel is convolved with the
respective K ×K channel in the filter to obtain an output of
size N ×M ×C. This is followed by a point-wise convolution
with C ′ filters of size 1 × 1 × C to obtain an output of size
N ×M × C ′. For both these illustrated cases, the input and
output sizes are the same. However, there is a major difference
in the number of operations: Standard convolution has a total of
NMC ′K2C operations, while depthwise separable convolution
has NMC(K2 +C ′) operations. This reduction in number of
operations with depthwise separable convolution translates to
much reduced inference time at comparable accuracy values.

III. WHY DEPTHWISE CONVOLUTIONS ARE INEFFICIENT
ON SYSTOLIC ARRAYS?

In this section, we show why depthwise separable convolu-
tion has poor scaling performance on systolic arrays. We also
explain this finding in contrast to the widespread use of systolic
arrays for standard convolution.

A. 2D convolutions are not systolic algorithms

As described earlier, depthwise convolution requires inde-
pendent convolutions between 2D slices of the input with
2D kernels, henceforth referred to as a 2D convolution. 2D
convolution can be written in loops as shown in Fig. 2(a): A is
the input feature map, B the weight kernel, and C the output. Is



Fig. 2: (a) Loop representation of 2D convolution; (b) Cor-
responding recurrence relations; (c) Geometric representation
after transforming 2D convolution to a systolic algorithm.

this a systolic algorithm? We first attempt to transform it into
a Regular Iterative Algorithm (RIA) which as a set contains
all systolic algorithms. Fig. 2(b) shows the recurrence relations
for 2D convolution. Like in the case of matrix multiplication,
we have added a third index to satisfy the single assignment
property. Unlike the case of matrix multiplication, however,
we observe that the index offsets between LHS and RHS are
not constants. For instance, in the recurrence relation for C,
the index offset to A is given as [bk/Kc, k%K, 0]. Since this
index offset depends on the index k, it violates the important
requirement for a RIA.

Can this specification be refactored in some other way to
satisfy RIA’s requirement? Note that computing the output at
index (i, j) requires summing up K2 products. We can map
these computations to K2 values of the k index. Computing
a sum of these products implies a single offset dependence
between C[i, j, k] and C[i, j, k + 1]. However, for matrices A
and B, the computation of these products requires input across
a grid of K × K values. Independent of the order in which
these values are accessed, their i, j indices will depend on the
index k. However, all these products are summed to the same
i, j index of C. Thus, in the same recurrence relation, the i, j
index of C remain constant while those of A,B depend on
k, violating the criterion for constant index offsets. We thereby
conclude that 2D convolution cannot be written as an RIA, and
consequently depthwise convolution is not a systolic algorithm.

Though depthwise convolution is not a systolic algorithm,
standard convolution operations are mapped on to systolic
arrays. We discuss two ways in which such mapping is done
and why the results do not extend to depthwise convolution.

B. Transformation im2col and Data Reuse

Consider a transformation of A such that each set of K×K
values required in each step of convolution is stored in a row.
With this transformation, the index offsets between C and A
become constant. This is the approach with im2col [16] which
creates a larger matrix A′ from A with repeating entries and
a flattened B matrix. The 2D convolution operation on these
modified matrices is a systolic algorithm as shown in Fig. 2(c).
Note that this computation does not scale on systolic dimension
1, i.e., when mapped to a 2D systolic array it would only use
a single column resulting in very poor utilization. This also
implies that data written on to the systolic arrays are not reused
across operations. This lack of data reuse significantly low-
ers performance of depthwise convolution on systolic arrays.
However, this is the not the case with standard convolution,
where the same input channel has to be convolved with weight

Fig. 3: Two methods that enable execution of standard con-
volution on systolic arrays: (a) Input reuse across filters, (b)
Ordering operations along channels.

matrices from multiple filters enabling data reuse. This is shown
in Fig. 3(a), wherein the filters scale along systolic dimension
1 achieving high utilization. Thus, depthwise convolution’s
channel-wise decomposition which was designed for higher
efficiency also lowers utilization on systolic arrays.

C. Channel-wise operations

To avoid the expensive im2col transformation, an alternative
approach maps standard convolution into channel-wise opera-
tions on systolic arrays [2]. Specifically, standard convolution
is implemented as a dot product of vectors of size C along
channels from the input and filter matrices. The corresponding
mapping on to a systolic array is shown in Fig. 3(b). The
generated output needs to be reduced with an adder tree (usually
a part of most systolic array accelerators) to obtain the final
output. In this case too, we are able to utilize both systolic
dimensions. Again, depthwise convolution does not expose any
computation spanning channels to benefit from this mapping.

In summary, with the RIA formalism, we showed that
2D convolution is not a systolic algorithm. Further, the two
methods of im2col transformation and channel-wise operations,
which enable standard convolution to execute on systolic arrays,
are not applicable to depthwise convolution. This explains the
poor utilization of systolic arrays with depthwise convolution,
and motivates a new systolic-friendly operator.

IV. FUSECONV: OUR HW/SW CO-DESIGN SOLUTION

In this section, we discuss the proposed FuSeConv-operation
and how it can be mapped on to a systolic array.

A. The FuSeConv Operator

Though depthwise separable convolution decomposes stan-
dard convolution to reduce operations, the resultant algorithm
is not systolic and does not benefit from either data reuse or
channel-wise mapping. Our motivation with the FuSeConv is
to combine the benefits of decomposing convolution with that
of a systolic algorithm. In addition, we also draw inspiration
from the work on grouped convolution [17].



Fig. 4: Transformation of a depthwise separable convolution
layer into a FuSeConv layer

Recall that a depthwise separable convolution has K × K
2D convolutions for filtering C input channels independently,
followed by C ′ pointwise filters (see Fig. 4(a)). We extend
this decomposition with FuSeConv, where we factorize the
K × K × C depthwise filters into two groups of depthwise
filters: K×1×C/D 1D row filters and 1×K×C/D 1D column
filters. Here, D is a design-knob used to generate variants of
FuSeConv layers. The resultant output is passed through C ′

pointwise filters (see Fig. 4(b)). In essence, FuSeConv performs
1D convolutions alone to fully separate the filtering of infor-
mation along the three axes of the input, and hence the name.

With the same input and output sizes as with depthwise
separable convolution, FuSeConv is designed as a drop-in
replacement. With this replacement, number of parameters
changes from C(K2 + C ′) to 2

DC(K + C ′) and number
of operations from NMC(K2 + C ′) to 2

DNMC(K + C ′).
To study the trade-off between efficiency and accuracy, we
consider two variants for D = 1 and 2. In the full variant
with D = 1, we apply both row and column filters on all
channels for an output of size K×K×2C. In the half variant
with D = 2, row filters operate on C/2 channels while column
filters operate on the other C/2 channels for an output of size
K × K × C. Clearly, the full variant with D = 1 has more
parameters and operations.

B. FuSeConv is a systolic algorithm

FuSeConv comprises of independent 1D convolutions which
have been extensively studied and found to be systolic algo-
rithms [18]. Indeed [1] illustrates 7 different ways of mapping
a 1D convolution on to a linear systolic array. In Fig. 7 (a),
we show the 1D convolution both as a loop and recurrence
relations. The recurrence relations satisfy the requirements of
an RIA. The other operation in a FuSeConv layer, point-wise
convolution, is a vector dot-product and is also a systolic al-
gorithm. Thus, FuSeConv can be efficiently mapped to systolic
arrays without requiring transformations such as im2col.

C. Proposed Hardware Architecture and Mapping

1) Optimized dataflow for FuSeConv: The independent 1D
convolutions of FuSeConv can be mapped into individual rows
of a 2D systolic array. However, this mapping requires a slightly
modified dataflow: Each row of a systolic array should have a
broadcast link that sends weight values to all PEs in that row,
which is similar to Eyeriss [19] that relies on an NoC instead
of a systolic architecture. This modified dataflow can co-exist

Fig. 5: Overview of systolic array with the proposed dataflow

Fig. 6: Mapping FuSe layers to the proposed systolic-array
architecture

with the standard systolic flow from top to bottom. For this,
the PE can be configured (as shown in Fig. 5) to either read
data from the top systolic link or the row broadcast link. We
compute and report the additional overhead of this modified
dataflow in the experimental section.

2) Mapping FuSeConv layers: Fig. 6 illustrates how a
FuSeConv is mapped onto a systolic array of size S × S
with the modified dataflow. We choose the half variant (i.e.,
D = 2), and only show the mapping of row 1D filters.
The mapping of column filters and the full variant follows
similarly and the 1x1 pointwise convolution of FuSeConv is
mapped to the standard systolic dataflow. The input is sliced
into its W rows, denoted A1 through AW , and each slice is
allocated to one row of the systolic array. Every row is further
sliced across the channels into C/2 channel slices denoted A1,1

through A1,C/2. Similarly, weights are sliced across channels
into C/2 1D filters denoted K1 through KC/2. The computation
follows multiple folds wherein at every fold one weight channel
slice operates over one input-channel slice generating S output
feature map slices. After all folds are computed, the output
slices are concatenated to form the output feature map.

3) Efficient utilization: With the proposed operation, mod-
ified dataflow, and mapping, is a systolic array efficiently
utilized? In Fig. 7 (a), we visualize a 1D filter of 2 weights
convolved with a 4x3 input. Note that due to the broadcast
link, at any time step the weight value is available along
systolic dimension 1 (columns in the array). Notice also that the
different rows of the input are mapped along systolic dimension
2 (rows in the array). We have explicitly shown the values of
the input along the systolic dimension 1 due to the modified
dataflow pattern. Unlike for depthwise convolution, the com-
putation of FuSeConv spans both systolic array dimensions,
thereby achieving high utilization. The span along dimension
1 increases as columns in the input increase, while the span
along dimension 2 increases as rows in the input increase. If
input size is smaller than the systolic dimension S, then we can
simultaneously map 1D convolutions across multiple channels
as shown in Fig. 7 (b). Thus, FuSeConv is a systolic algorithm



Fig. 7: (a) Loop representation, recurrence relation and geomet-
ric representation of a 1D convolution; (b) Mapping multiple
channels of 1D convolutions to the proposed systolic-array
which can be mapped with the modified dataflow to fully utilize
both axes of a 2D systolic array.

V. EXPERIMENTAL SETUP AND RESULTS

In this section, we detail the experimental setup and share
results to evaluate FuSeConv.

A. Experimental Setup

1) Networks: We study 5 baseline DNNs, 4 networks from
the MobileNet family (V1, V2, V3 small, and V3 large)
[3]–[5], and MnasNet-B1 [20]. These networks are designed
to be efficient on inference especially for edge devices, and
prominently include depthwise separable convolution. For each
of these 5 networks, along with the baseline we consider 4
variants with FuSeConv. Full and Half variants with D = 1
and D = 2 are the first two variants which replace all
depthwise separable convolution layers in the baseline network
with respective FuSeConv layers. We then re-train the network
with FuSeConv layers using the setup described below. We
consider two other variants Full-50% and Half-50% by using
FuSeConv replacements for only 50% of the depthwise sep-
arable convolution layers. For 50% variants, we do drop-in
replacement for layers in such a way that maximum latency
benefits are obtained.

2) Datasets and Training Setup: We evaluate the networks
based on accuracy on ImageNet [21] dataset. We use PyTorch
[22] to train the models and report accuracy. Half-precision
floating point (FP16) is used as the precision for both weights
and activations during training and inference. We use standard
rmsprop optimizer with 0.9 momentum, an initial learning rate
of 0.016, with a batch size of 128 per GPU. The learning rate
has an exponential decay of 0.97 for every 2.4 epochs. We
maintain exponential moving averages of all weights with a
decay of 0.9999, and use a weight decay of 1e-5. We train all
models on either 8 V100 or 4 P100 GPUs for 350 epochs.

3) Latency Estimation: Latency is a complex function of
several factors including speed of main memory, and size and
speed of buffers within the systolic array. To simplify the
comparison of software choices on systolic arrays, we use the
methodology formalized in SCALE-Sim [23]. Specifically, we

Network ImageNet
accuracy

MACs
(millions)

Params
(millions) Speedup

MobileNet-V1 [3] 70.60 589 4.23 1x
MobileNet-V1 FuSe-Full 72.86 1122 7.36 4.1x
MobileNet-V1 FuSe-Half 72.00 573 4.20 6.76x
MobileNet-V1 FuSe-Full-50% 72.42 764 4.35 2.2x
MobileNet-V1 FuSe-Half-50% 71.77 578 4.22 2.36x

MobileNet-V2 [4] 72.00 315 3.50 1x
MobileNet-V2 FuSe-Full 72.49 430 4.46 5.1x
MobileNet-V2 FuSe-Half 70.80 300 3.46 7.23x
MobileNet-V2 FuSe-Full-50% 72.11 361 3.61 2.0x
MobileNet-V2 FuSe-Half-50% 71.98 305 3.49 2.1x

MnasNet-B1 [20] 73.50 325 4.38 1x
MnasNet-B1 FuSe-Full 73.16 440 5.66 5.06x
MnasNet-B1 FuSe-Half 71.48 305 4.25 7.15x
MnasNet-B1 FuSe-Full-50% 73.52 361 4.47 1.88x
MnasNet-B1 FuSe-Half-50% 72.61 312 4.35 1.97x

MobileNet-V3 Small [5] 67.40 66 2.93 1x
MobileNet-V3 Small FuSe-Full 67.17 84 4.44 3.02x
MobileNet-V3 Small FuSe-Half 64.55 61 2.89 4.16x
MobileNet-V3 Small FuSe-Full-50% 67.91 73 3.18 1.6x
MobileNet-V3 Small FuSe-Half-50% 66.90 63 2.92 1.68x

MobileNet-V3 Large [5] 75.20 238 5.47 1x
MobileNet-V3 Large FuSe-Full 74.40 322 10.57 3.61x
MobileNet-V3 Large FuSe-Half 73.02 225 5.40 5.45x
MobileNet-V3 Large FuSe-Full-50% 74.50 264 5.57 1.76x
MobileNet-V3 Large FuSe-Half-50% 73.80 230 5.46 1.83x

TABLE I: ImageNet performance, MACs and speedup of DNNs
used to evaluate FuSeConv.
assume that performance is limited only by operations on the
systolic array: We add up the time required to load values into
the array, compute in the MACs, systolically communicate par-
tial values, and flush output beyond the array. Since convolution
operations dominate inference on DNNs and FuSeConv is a
drop-in replacement for depthwise convolution, we consider
compute-bound convolutional layers (including Squeeze and
Excite layers) and fully connected layers in latency estimation.
We report all the performance numbers on a 64× 64 systolic-
array. We only consider the output stationary dataflow, and add
support for computing latency with proposed broadcast links.
B. Experimental Results

1) Accuracy on datasets: We report the accuracy of differ-
ent model variants in Table I. Note the differences between
accuracy of a variant and the corresponding baseline (without
FuSeConv). For the Half variant, in 4 out of the 5 networks,
there is a drop in accuracy of over 1%. On the other hand, the
Full variant is always within 1% of accuracy of the baseline,
with an average drop of under 0.3%. This shows that the
higher parameter and operation counts of the Full variant
enable improved accuracy. We thus conclude that the drop-in
replacement with Full variant retains baseline accuracy.

2) Speedup in inference time: Table I shows the MAC count
and speed-up relative to baseline (without FuSeConv) across
networks and variants. Additionally, Fig. 8 (a) reports the exact
latency of the networks. We report significant speed-up: 4.16×
to 7.23× with the Half variant and 3.02× to 5.1× with the Full
variant. These speed-up values are relative to baseline networks
designed to be efficient on the edge. In spite of its larger MAC
count, the Full variant is significantly faster than the baseline
network due to the efficient mapping of FuSeConv on to the
systolic array. The numbers for 50% variants reveal a sensitive
design trade-off between operations/latency and accuracy.

3) Understanding the high speed-up: To understand the high
observed speed-up, we pose two questions: Which layers and
which operators are most responsible for the speed-up?



MobileNet-V1 MobileNet-V2 MnasNet-B1 MobileNet
Small

MobileNet-V3
Large

0

0.5M

1M

1.5M

2M

2.5M

3M Baseline
Full FuSeConv
Half FuSeConv
Full-50% FuSeConv
Half-50% FuSeConv

La
te

nc
y 

in
 c

yc
le

s

(a)

0 5 10
MB1

MB3

MB5

MB7

MB9

MB11

MB13

MB15

MB17

Speed-up

La
ye
rs

(b)

0 50 100

MobileNet-V1

MobileNet-V2

MnasNet-B1

MobileNet-V3

Small

MobileNet-V3

Large

Standard

Point-wise

Depthwise

Standard

Point-wise

FuSe

Percentage of cycles

Baseline

FuSeConv

(c)

32x32 64x64 128x128 256x256

2

4

6

8
MobileNet-V3 Small
MobileNet-V3 Large
MnasNet-B1
MobileNet-V2
MobileNet-V1

Systolic Array Size

S
pe

ed
-u

p

(d)

Fig. 8: Experimental results evaluating FuSeConv: (a) Latency estimates on 64 × 64 arrays, (b) Layer-wise speed up for
MobileNetV2, (c) Latency distribution of operators for baseline and FuSeConv networks, and (d) Ablation study

On the analysis of layers, we compute layer-wise speed-up
for the Full variant for MobileNetV2. The speed-up ranges from
2.48× to 9.38× (see Fig. 8(b)). Notably, initial layers which
have larger input feature maps report larger speed-up values.
This suggests that larger layers benefit more from FuSeC-
onv transformation due to better utilization of the systolic array.

On the analysis of operators, we report the latency distribu-
tion of different operators before and after FuSeConv transfor-
mation. As shown in Fig. 8(c), the latency of baseline networks
are dominated (30-50%) by depthwise-separable convolutions
which as we saw inefficiently utilize the systolic array. After
the FuSeConv transformation, the latency distribution drasti-
cally shifts towards point-wise convolutions while the efficient
FuSeConv operators account for a much smaller fraction (4-
11%). This establishes that the combination of FuSeConv and
the modified dataflow significantly improves utilization.

4) Scaling to Larger Systolic Arrays: We study how the
reported speed-up scales with increasing size of systolic arrays.
As shown in Fig. 8(d), the speed-up increases as we move to
larger arrays. This shows that the under-utilization of a systolic
array becomes more stark with increasing array size. Interest-
ingly, under-utilization has a more severe effect on performance
for larger networks. For instance, the larger, older network
MobileNetV1 shows a higher speed-up on larger arrays than
the newer, smaller network MobileNetV3-small. This suggests
differentiated design for cloud and edge accelerators.

5) Area and Power Overhead of Modified Dataflow: To
evaluate the hardware overhead of the modified dataflow, we
implemented a 32 × 32 systolic-array in Bluespec System
Verilog [24] and synthesized to NanGate’s open cell library in
45nm. Two variants were implemented - with and without the
weight-broadcast links. The area and power consumption were
measured using Synopsys Design Compiler. The relative area
overhead was measured to be 4.35% while the power overhead
was 2.25%. We consider these overheads to be justifiably small
considering the large speed-ups reported with FuSeConv.

VI. CONCLUSION

We analyzed why depthwise separable convolution is not
efficient on systolic arrays with the formalism of regular
iterative algorithms. As a drop-in replacement, we proposed
FuSeConv which fully decomposes into 1D convolutions. We
showed that FuSeConv is efficiently executed on systolic arrays
with a modified dataflow. The Full variants of FuSeConv match
the accuracy of efficient networks such as MobileNet and
MNasNet, but with high speed-up of about 4×. Further work

can explore other variants to sensitively trade-off latency and
accuracy. Also, framing FuSeConv as the result of a manual
operator search, our work motivates automated Network Oper-
ator Search (NOS) in complement to ongoing studies on NAS.

VII. ACKNOWLEDGEMENTS

We thank Google Cloud Platform and Robert Bosch Centre
for Data Science and Artificial Intelligence, IIT Madras for
their help with compute resources for this project. We thank
Gokulan for his help in modeling systolic-arrays.

REFERENCES

[1] H.-T. Kung, “Why systolic architectures?” IEEE computer, 1982.
[2] N. P. Jouppi et al., “In-Datacenter Performance Analysis of a Tensor

Processing Unit,” in ISCA 2017.
[3] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Net-

works for Mobile Vision Applications,” arXiv, 2017.
[4] M. Sandler et al., “MobileNetV2: Inverted Residuals and Linear Bottle-

necks,” in CVPR 2018.
[5] A. Howard et al., “Searching for mobilenetv3,” arXiv 2019.
[6] G. Huang et al., “Densely Connected Convolutional Networks,” in In

Proc. IEEE CVPR, 2017.
[7] S. Gupta et al., “Accelerator-aware Neural Network Design using Au-

toML,” arXiv preprint arXiv:2003.02838, 2020.
[8] A. Gholami et al., “SqueezeNext: Hardware-Aware Neural Network

Design,” in In Proc. IEEE CVPR, 2018.
[9] S. K. Rao et al., “Regular iterative algorithms and their implementation

on processor arrays,” In Proc. IEEE, 1988.
[10] S. W. Song, “Systolic algorithms: concepts, synthesis, and evolution.”
[11] K. Chellapilla et al., “High Performance Convolutional Neural Networks

for Document Processing,” 2006.
[12] “Accelerating AI in Datacenters. Xilinx ML Suite,” 2019.
[13] P. J. Bannon et al., “Accelerated mathematical engine,” Jun. 2 2020, uS

Patent 10,671,349.
[14] H. Kung and C. Leiserson, “Systolic arrays for (VLSI), Introduction to

VLSI Systems,” Mead and L. Conway, pp. 260–292, 1980.
[15] C. Wan, “Systolic algorithms and applications,” Ph.D. dissertation,

Loughborough University.
[16] Y. Jia et al., “Caffe: Convolutional Architecture for Fast Feature Embed-

ding,” arXiv preprint arXiv:1408.5093, 2014.
[17] A. Krizhevsky et al., “Imagenet Classification with Deep Convolutional

Neural Networks,” in NeurIPS, 2012.
[18] P. Quinton, “Automatic Synthesis of Systolic Arrays from Uniform

Recurrent Equations,” in ISCA, 1984.
[19] Y.-H. Chen et al., “Eyeriss: An Energy-Efficient Reconfigurable Accel-

erator for Deep Convolutional Neural Networks,” IEEE JSSC 2016.
[20] M. Tan, B. Chen et al., “MnasNet: Platform-Aware Neural Architecture

Search for Mobile,” in CVPR 2019.
[21] J. Deng et al., “ImageNet: A Large-Scale Hierarchical Image Database,”

in In Proc. CVPR, 2009.
[22] A. Paszke et al., “Pytorch: An Imperative Style, High-Performance Deep

Learning Library,” in NeurIPS, 2019, pp. 8026–8037.
[23] A. Samajdar et al., “A systematic methodology for characterizing scala-

bility of dnn accelerators using scale-sim,” in ISPASS. IEEE, 2020.
[24] R. Nikhil, “Bluespec System Verilog: efficient, correct RTL from high

level specifications,” in Proc. MEMOCODE. IEEE, 2004.


